

Subscriber access provided by ISTANBUL TEKNIK UNIV

ent-Labdane Glycosides from Heterothalamus alienus

José R. Saad, Oscar S. Giordano, Carlos M. Cerda-García-Rojas, Joel J. Trujillo-Serrato, and Pedro Joseph-Nathan

> J. Nat. Prod., 1993, 56 (11), 1944-1947• DOI: 10.1021/np50101a012 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50101a012 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

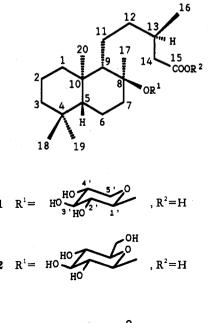
Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

ENT-LABDANE GLYCOSIDES FROM HETEROTHALAMUS ALIENUS

JOSÉ R. SAAD, OSCAR S. GIORDANO,

Departamento de Química Orgánica, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700 San Luis, Argentina

CARLOS M. CERDA-GARCÍA-ROJAS, JOEL J. TRUJILLO-SERRATO, and PEDRO JOSEPH-NATHAN*


Departamento de Química, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Apartado 14-740, México, D. F., 07000 México

ABSTRACT.—Two new diterpene glycosides, 8-O- β -D-xylopyranosyl-ent-8 β -hydroxylabdan-15-oic acid [1] and 8-O- β -D-glucopyranosyl-ent-8 β -hydroxylabdan-15-oic acid [2], were isolated from *Heterothalamus alienus*. Their structures were elucidated by nmr spectroscopy, and their absolute configurations were determined by tranformation of both natural products into methyl ent-8 β -hydroxylabdan-15-oate. The sugar residues were identified after acid hydrolyses of the two natural products.

The small genus *Heterothalamus* is composed of ca. seven species which are primitives from South America (1,2), and to our knowledge there are only limited studies of this genus (3,4). This paper describes the chemical study of *Heterothalamus alienus* (Spreng.) O.Kuntze (Compositae), a very ramified shrub which grows in the mountains near San Luis and Comechingones, Argentina and is often used as an ornamental (1,2).

RESULTS AND DISCUSSION

The MeOH extracts of *H. alienus* afforded two new diterpene glycosides: $8-0-\beta$ -D-xylopyranosyl-ent- 8β -hydroxylabdan-15-oic acid [1] and $8-0-\beta$ -D-glucopyranosyl-ent- 8β -hydroxylabdan-15-oic acid [2].

The ir spectrum of compound 1 indicated the presence of hydroxyl and carboxyl groups. The ¹H-nmr spectrum, measured in DMSO- d_6 in the presence of D₂O (Table 1), shows six signals at the characteristic chemical shifts and with the coupling constants of a β -xylopyranosyl residue (5). The 8 β -hydroxylabdan-15-oic acid moiety of 1 was evident when the ¹³C-nmr spectrum (Table 2) was compared with the reported chemical shifts for methyl 8 β -hydroxylabdan-15-oate (6). Acetylation of 1 followed by treatment with CH₂N₂ afforded compound 3 which shows three acetyl singlets and one carboxymethyl singlet in its ¹H-nmr spectrum (Table 1). Furthermore, the agreement between the ¹³C-nmr chemical shifts of compound 3 in CDCl₃ and those of methyl 8 β -hydroxylabdan-15-oate (6) is indicative of the diterpene moiety in 3.

Compound 2 shows bands for hydroxyl and carboxyl groups. Its ¹H-nmr spectrum, in DMSO- d_6 +D₂O (Table 1), shows characteristic signals for the β -glucopyranosyl fragment (7). The structure of 2 was deduced by comparison of the ¹³C-nmr spectrum with those of 1, 3 (Table 2), and methyl 8 β -hydroxylabdan-15-oate (6).

In order to confirm the structures of **1** and **2** and to have evidence for their absolute configurations, both compounds were subjected to acid hydrolysis. While treatment of **1** and **2** with aqueous HCl in MeOH under reflux gave methyl *ent*-labd-8-en-15-oate (8,9), a similar treatment of both substances using diluted aqueous HCl at room temperature afforded methyl *ent*-8 β -hydroxylabdan-15-oate, identical in all respects to the previously described compound (6,10), including ¹³C-nmr measurements and optical rotation.

The D-xylose and D-glucose residues were isolated as their corresponding anomeric mixtures from the aqueous layers are left after the acid hydrolyses and indentified by tlc and ¹H nmr. The absolute configurations of the sugar moieties were determined by optical rotations of the isolated sugars from **1** and **2** and by comparison with mutarotated samples obtained from authentic β -D-xylose and β -D-glucose, respectively. In each case the rotations were identical. Thus, the sugars attached to **1** and **2** are the D enantiomers.

Proton	Compound			
	1 ^b	2 ^b	3°	
I. -14	2.24 (6,15)	2.25 (6,15)	2.38 (6,15)	
-I ₆ -14	1.92 (9,15)	1.96 (9,15)	2.18 (9,15)	
de-16	0.86 (6)	0.88 (6)	0.92 (6)	
de- 17	1.10	1.12	1.12	
fe-18	0.83	0.84	0.84	
fe-19	0.76	0.76	0.77	
Me-20	0.78	0.79	0.80	
H-1′	4.28 (8)	4.34 (8)	4.64 (8)	
I-2'	2.87 (8,9)	2.90 (8,9)	4.87 (8,10)	
I-3'	3.09 (9,9)	3.18 (9,10)	5.18 (10,10)	
I-4'	3.23 (5,9,11)	3.04 (10,10)	4.96 (6,10,11)	
H-5ax	2.98 (11,11)	3.06 (1,5,10)	3.27 (11,12)	
H-5eq	3.58 (5,11)	l —	4.05 (6,12)	
I6′		3.42 (5,12)	_	
		3.63 (1,12)	_	

TABLE 1. ¹H-nmr Data (300 MHz) of ent-Labdane Derivatives 1-3.^a

⁴Chemical shifts are in ppm with TMS as the internal reference. Coupling constants in parentheses are in Hz.

^bIn DMSO- d_6 +a drop of D₂O.

^cIn CDCl₃. Ac: 2.04, 2.03 and 2.02 ppm. OMe: 3.66 ppm.

Carbon	Compound		
	1 ^b	2 ^b	3 ^c
C-1	39.8	39.8	39.9
C-2	17.9	17.9	18.4
C-3	41.5	41.4	41.5
C-4	32.7	32.7	33.2
C-5	55.4	55.3	55.8
C-6	19.5	19.5	20.0
C-7	39.7	d	39.6
C-8	79.9	79.8	82.3
C-9	60.1	60.2	60.6
C-10	39.7	_	39.2
C-11	22.3	22.3	23.2
C-12	40.2	40.2	40.2
C-13	30.4	30.3	31.4
C-14	41.5	41.4	42.0
C-15	174.3	174.4	174.0
C-16	19.7	19.7	19.6
C-17	20.0	19.7	20.3
C-18	33.1	33.2	33.4
C-19	21.3	21.2	21.5
C-20	15.5	15.4	15.7
C-1'	96.5	95.7	94.4
C-2'	73.6	73.8	71.7
C-3'	76.8	77.1	72.6
C-4'	69.6	70.2	69.3
C-5'	65.2	76.4	62.3
C-6'		61.1	<u> </u>

TABLE 2. ¹³C-nmr Chemical Shifts of *ent*-Labdane Derivatives 1-3.^{*}

'In ppm at 75.4 MHz.

^{\circ}In DMSO- d_6 .

¹In CDCl₃. Acetates: 170.3, 169.8, 169.0, 20.7, 20.7 and 20.7 ppm. MeO: 51.2 ppm.

^dObscured by the DMSO- d_6 signal.

It should be noted that *ent*-labdane derivatives related to the two new substances 1 and 2 have been isolated from South American species of the genus *Baccharis* (5,11,12).

EXPERIMENTAL

PLANT MATERIAL, EXTRACTION, AND ISOLATION.—Specimens of *H. alienus* were collected in El Suyuque, San Luis, Province of Argentina in March 1990 and identified by botanist Luis A. del Vitto. A voucher specimen (5335 UNSL) is deposited at the Herbario de la Universidad Nacional de San Luis. The air-dried plant material (2.1 kg) was extracted with hot MeOH. The combined extracts were evaporated to dryness, and the residue (150 g) was chromatographed on Si gel 60G. The fractions eluted with C₆H₆-EtOAc (1:1) and C₆H₆-EtOAc (4:6) were separately rechromatographed to afford 1 (2.2 g) and 2 (1.6 g), respectively.

8-O- β -D-Xylopyranosyl-ent-8 β -byrdoxylabdan-15-oic acid [1].—Recrystallizations from EtOH provided pure 1 as white needles: mp 199–200°; [α]₅₈₉ – 2.6, [α]₅₇₈ – 2.6, [α]₅₄₆ – 2.8, [α]₄₃₆ – 4.6, [α]₃₆₅ – 6.6, (DMSO, c=5.0); ir (KBr) ν max cm⁻¹ 3420 and 1030 (OH), 3300 and 1715 (COOH); ¹H nmr see Table 1; ¹³C nmr see Table 2.

8-O-β-D-Glucopyranosyl-ent-8β-byrdoxylabdan-15-oic acid [2].—Recrystallization from MeOH/H₂O provided pure 2 as white needles: mp 178–180°; $[\alpha]_{359}$ +3.0, $[\alpha]_{378}$ +4.0, $[\alpha]_{346}$ +4.5, $[\alpha]_{436}$ +7.5, $[\alpha]_{365}$ -13.0, (EtOH, c=2.0); ir (KBr) ν max cm⁻¹ 3400, 1060 and 1015 (OH), 3400 and 1708 (COOH); ¹H nmr see Table 1; ¹³C nmr see Table 2.

Methyl-ent-8 β -hydroxylabdan-15-oate.—Solutions of **1** or of **2** (100 mg) in MeOH (67 ml) were stirred in solutions of concentrated aqueous (HCl-H₂O (1:3) (four additions of 1.4 ml each 24 h). After 72 h, the reaction mixtures were neutralized with NaHCO₃ and evaporated under vacuum. In each case the residue was extracted with CH₂Cl₂, the organic layer was washed with H₂O and aqueous NaHCO₃ and H₂O, dried over Na₂SO₄, filtered, and evaporated under vacuum. Each residue was chromatographed on Si gel (230–400 mesh). The fractions eluted with hexane-EtOAc (9:1) yielded a solid which was recrystallized from MeOH/ H₂O to give methyl *ent*-8β-hydroxylabdan-15-oate (8 mg) as white needles: mp 70–72° [lit. (10) 72–74°]; [α]₅₈₉ +7.0, [α]₅₇₈ +9.0, [α]₅₄₆ +10.5, [α]₄₃₆ +18.0, [α]₃₆₅ +29.0 (CHCl₃, c=1.0) [lit. (10) [α]₅₈₉ +10°].

Methyl 8-O-[3',4',5'-tri-O-acetyl- β -D-xylopyranosyl]-ent-8 β -bydroxylabdan-15-oate [3].—Treatment of 1 with Ac₂O followed treatment with CH₂N₂ under standard conditions afforded 3 as an amorphous solid. Recrystallization from MeOH/H₂O provided pure 3 as white needles: mp 158–159°; [α]₃₈₉ –22.0, [α]₃₄₆ –24.0, [α]₃₄₆ –40.0, [α]₃₆₅ –62.0° (CHCl₃, c=0.5); ir (KBr) ν max cm⁻¹ 1740 (COOR); ¹H nmr see Table 1; ¹³C nmr see Table 2.

Methyl ent-labd-8-en-15-oate.—Solutions of 1 or of 2 (200 mg) in MeOH/H₂O (45 ml and 45 ml) were treated with a solution of concentrated aqueous HCl (20 ml). The reaction mixtures were refluxed during 2 h, concentrated to one-half volume, and extracted with CH_2Cl_2 . In each case the organic layer was washed with H₂O, aqueous NaHCO₃, and H₂O, dried over Na₂SO₄, filtered, and evaporated under vacuum. Each residue was then chromatographed on alumina. The fractions eluted with hexane yielded the pure methyl ent-labd-8-en-15-oate (8,9) (80 mg) as a colorless oil.

IDENTIFICATION OF THE SUGAR RESIDUES.—The aqueous layers left from the acid treatments of 1 and of 2, described above, were neutralized with concentrated aqueous NaHCO₃ and evaporated to dryness. The solid residues were chromatographed on alumina. The fractions eluted with EtOAc-MeOH (7:3) afforded D-xylose and D-glucose, respectively. These samples were identified after tlc, ¹H nmr, and optical rotation comparisons with authentic samples, which were previously stored overnight as aqueous solutions.

ACKNOWLEDGMENTS

Partial financial support from CoNaCyT, México, is acknowledged.

LITERATURE CITED

- 1. M.J. Dimitri, "Enciclopedia Argentina de Agricultura y Jardinería. Descripción de las Plantas Cultivadas," Acme, Buenos Aires, 1980, Vol. 2, p. 1033.
- 2. D.L. Anderson, J.A. Del Aguila, and A.E Bernardón, Rev. Invest. Agropec., Ser. 2, 7, 153 (1970).
- 3. R. Boeker, J. Jakupovik, F. Bohlmann, and R.M. King, Rev. Latinoam. Quim., 17, 47 (1986).
- 4. H. Beck, An. Assoc. Bras. Quim., 10, 295 (1951).
- 5. C. Zdero, F. Bohlmann, R.M. King, and H. Robinson, Phytochemistry, 25, 2841 (1986).
- 6. H. Hirota, T. Nakamura, T. Tsuyuki, and T. Takahashi, Bull. Chem. Soc. Jpn., 61, 4023 (1988).
- 7. E. Vidal-Ollivier, A. Babadjamian, R. Faure, R. Chemli, K. Boukef, G. Balansard, and E.J. Vincent, Spectrosc. Lett., 22, 579 (1989).
- 8. M.T. Davies-Coleman and D.J. Faulkner Tetrahedron, 47, 9743 (1991).
- 9. G. Hugel, A.C. Oehlschlager, and G. Ourisson, Tetrahedron, Suppl. 8, Part 1, 203 (1966).
- 10. C.A. Henrick, P.R. Jefferies, and R.S. Rosich, Tetrabedron Lett., 3475 (1964).
- 11. C. Zdero, F. Bohlmann, and H.M. Niemeyer, Phytochemistry, 29, 2611 (1990).
- 12. F. Faini, C. Labbe, and M.I. Polanco, Phytochemistry, 31, 3274 (1992).

Received 5 April 1993